Rigorous Curriculum Design

Unit Planning Organizer

Subject(s)	Science
Grade/Course	8th grade
Unit of Study	Understanding Hydrosphere
Pacing	10 days

Priority Essential Standards

8.E.1 Understand the hydrosphere and the impact of humans on local systems and the effects of the hydrosphere on humans.

"UNWRAPPED" Priority Standards

Water is one of the most common substances on Earth. Water is circulated on Earth by the water cycle. The availability of water varies with local geography. Humans use water as a resource. Students should understand the local river basin and where water for human use comes from. Oceans area an integral part of the hydrosphere and a resource for humans. The health of water systems is determined by the balance between physical, chemical, and biological variables. Students learn they are stewards of the hydrosphere.

"Unwrapped" Skills (students need to be able to do)

Students should be able to explain the structure of the hydrosphere. Be able to explain the properties of water that make it such a unique substance. They should be able to label a distribution of water in the world graph. Students will be able to explain where water for human use comes from and specifically where their personal water comes from.

Essential Questions

- What makes water such a special substance?
- How does water circulate through Earth's crust, oceans, and atmosphere?
- What energy source allows water to circulate through the Earth?
- How much of Earth's freshwater is available for human consumption and where is it located
- What are the local river basins and where do we get water supplies locally?

Unit Assessments Pre-Assessment

Create short, ungraded "checks for student understanding" for the educator to administer throughout the unit of study that are **directly aligned** to the post-assessment questions (selected-, short-, extended-response, and/or performance-based) and that coincide with **learning progressions**—the "building block chunks" of instruction.

Post-Assessment

Some examples of unit assessments could be diagramming the water cycle, graphing the distribution of water in the world, building a model of water showing polarity, using graphic organizers to differentiate between cohesion and adhesion, graphic organizer of all unique properties of water, making a brochure "selling" water based on its unique properties, doing a study of specific places in the world where water is scarce and comparing it to the area in which the student lives (many countries in Africa have information listed on the UN site for Water and Food Security.

Engaging Learning Experiences		
Learning Activities Using Text or Program	Authentic Performance Tasks	
Referring to selected texts from a variety of sources listed in the Instructional Resources and Materials—Physical and Technology-Based section, identify <i>specific learning activities</i> to	Gallery Walk	
use while teaching students the "unwrapped" Priority Standards concepts and skills, supporting standards, interdisciplinary connections, unit vocabulary terms, and extension/enrichment activities	Students can construct models of water molecules.	
 Teach vocabulary that is essential and may be new: adhesion, buoyancy, capillary action, cohesion, polar molecule, and surface tension. Each group will complete a 	Notebook	
Frayer Organizer for one of the words. Teacher may choose to a different vocabulary model.	sharing	
 Leacher will want to make a word wall with new vocabulary to leave up throughout the unit. 	Lab notes/sheets	
 Watch "Water's Molecular Structure" on Discovery Ed. If you do not have access to Discovery Ed. or if you prefer the following power point gives the properties of water very succinctly. 	Students can build models of river basins or draw	
 Students can take notes on the ppt. or video in their notebooks 	diagrams/maps	
 Student should do some investigations with the properties of water. Examples: <u>http://www.lhs.logan.k12.ut.us/~asemadeni/waterLab.htm</u> 		

6. Review water cycle and have students diagram in their	
notebooks. Good review is	
http://www.nebo.edu/misc/learning_resources/ppt/k-5/waercycle3.ppt	
A good demonstration to illustrate water distribution is	
http://ecosystems.psu.edu/youth/sftrc/lesson-plans/water/6-8/everywhere	
(If you want a graphic or background information	
http://ga.water.usgs.gov/edu/earthwherewater.html)	
Last teacher will want to use the following site to look	
specifically at North Carolina River Basins. At the bottom of	
the page you will see the interactive map. Students can	
locate their location and identify the river basin where they	
live. The teacher may also want to order the NC River Basin	
booklet or individual maps for use in the classroom.	
http://www.ee.enr.state.nc.us/riverbasins.html	

Unit Vocabulary Terms		
"Unwrapped" Priority Standards Concepts		
Some of these vocabulary terms are review. You will need to assess which		
terms are new to your students.		
Adhesion		
Buoyancy		
Capillary action		
Cohesion		
Polar molecule		
Surface tension		
Artesian well		
Buoyant force		
Condensation		
Dissolved oxygen		
Divide (river basin)		
Ground water		
Impermeable		
Permeable		
Polarity		
Reservoir		
Saturated zone		
Specific heat		
Solute		
Solvent		
Transpiration		
Tributary		
Water table		
Wetland		